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Abstract. The Kolmogorov-Johnson-Mehl-Avrami model, which is a nucleation and growth Poissonian
process in space, has been implemented by taking into account spatial correlation among nuclei. This
is achieved through a detailed study of a system of distinguishable and correlated dots (nuclei). The
probability that no dots be in a region of the space has been evaluated in terms of correlation functions.
The central point of the paper is the application of the theory to describe nucleation and growth in two
dimensions under constant nucleation rate, where correlation among nuclei depends upon the size of the
nucleus. This is a typical case occurring in transformation governed by particle diffusion. We also propose
a simple formula for describing the phase transition kinetics under this circumstance.

PACS. 05.70.Fh Phase transitions: general studies – 81.15.Aa Theory and models of film growth

1 Introduction

It is common knowledge that in order a process in space
be Poissonian, dots must be dispersed at random through-
out the whole space. Kolmogorov-Johnson-Mehl-Avrami
[1–3] applied this process for describing phase transfor-
mations based on nucleation and growth of the new phase
in the parent phase. In their model nuclei are preexist-
ing and the nucleation rate law is given a priori and
concerns all the nuclei. This means that nuclei already
covered by the new phase can start growing; these nu-
clei were christened phantoms by Avrami. To the end of
reaching a simple formula for the kinetics it is necessary
to include in the computation the contribution of phan-
toms [4], although they apparently do not contribute to
the new phase, and more than that if they did the model
simply would fail. As a matter of fact there exists a class
of functions that cannot be used for approximating the
growth law; for instance one of these, usually employed
in diffusional growths [5], is r = t1/2, r being the linear
dimension of nucleus. This limit of the KJMA model can
be overcome by simply considering the actual nucleation,
that is eliminating the phantom nuclei. Nevertheless this
alternative point of view requires a more complex mathe-
matical treatment; since the actual nucleation is limited to
the untransformed space, correlation among nuclei must
be taken into account [6]. Besides it is also possible that
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around a growing nucleus there be a zone where nucleation
is strongly reduced, for example because of the stress in-
duced by the new phase or because of a diffusional field. In
a case like this the introduction of the correlation function
would be compulsory, and as witnesses by the number of
papers issued since 2000 [7–12], correlated nucleation in
KJMA-type phase transitions has becoming an argument
of great moment.

The aim of the present paper is to give a comprehensive
and a quite general formulation of some results that we
have already published [6,8,12]. Specifically the novelty
are: i) the detailed demonstration of the exact kinetics
of nucleation and growth in the case of non random and
non simultaneous nucleation and, ii) using the result i), at
the second order in the correlation functions, to evaluate
the kinetics in case in which the island of radius R(t) is
surrounded by a capture zone of thickness ρ = const. The
latter is the starting point for treating the kinetics by
using the actual nucleation rate that is, in turn, accessible
by experiment.

The paper is organized as follows: In Section 2, we
describe the theory for treating a set of distinguishable
classes of dots. In particular, the central point of the
stochastic approach is to evaluate the probability, Q0, that
no dots occur into a region of a given volume. This is
achieved by exploiting the relation [13] Q0 = lim

eik→0

〈
eikN

〉
,

where N is the stochastic variable number of dots and k
is a parameter. The brackets stand for average over the
distribution that will be introduced shortly. Furthermore,
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one can demonstrate that
〈
eikN

〉
= L

[{exp(ikχ) − 1}], in
which L is an appropriate functional and χ is the charac-
teristic function of the dot classes. The bulk of calculation
is confined in the Appendices. Application of the theory
to KJMA-type phase transitions is presented in Section 3
for correlation functions depending on nucleus size.

2 Stochastic theory of distinguishable dots

2.1 Definitions

Let us consider a countable set of distinguishable classes
of dots. It goes without saying that within each class dots
are indistinguishable. Moreover dots are correlated one
another independently of the class they belong.

a) Following Van Kampen [13], each state of the sample
space consists of:
(i) a non negative integer m;
(ii) a non negative integer s;
(iii) a m-tupla of strictly positive integers n1, n2,

n3, · · · , nm, in such a way that their sum is equal
to s. The m-tupla is a partition of the integer s.

For each m, s and (n1, n2, n3, · · · , nm), s d-dimensional
real variables exist each of them ranging the whole
space:

{x1, · · · ,xn1}1, {x1, · · · ,xn2}2, · · · , {x1, · · · ,xnm}m︸ ︷︷ ︸
s

∈ �ds (1)

b) The probability distribution over these states is given
by a sequence of nonnegative functions, Q, defined in
the domain (1) and normalized according to

1 = Q(0)+
∑
{1}

∑
s

∑
∏

s
{1}

1
ni!

∫
Q

(1)
πs

i
dsx

+
∑
{2}

∑
s

∑
∏s

{2}

1
ni!nj !

∫
Q

(2)
πs

ij
dsx

+
∑
{3}

∑
s

∑
∏s

{3}

1
ni!nj !nk!

∫
Q

(3)
πs

ijk
dsx + · · ·

(2)

{1} indicates the set of all classes, {2} the set of all dis-
tinct couples of classes, {3} the set of all distinct terns
and so on. With the adjective distinct we signify that, for
example, the 3! possible terns made up by the classes ijk
are a unique tern. s is the total number of dots, m is the
number of classes and then s ≥ m is compulsory. Πs

{m} is
the set of all partitions of s with m integers and, πs

i1,i2···im

is an element of Πs
{m}. By the same token employed for

classes, the set of all co-ordinates will be indicated by 〈1〉,
the set of all distinct couples of co-ordinates by 〈2〉 and
so on. Although we are using the same symbol as aver-
age, misunderstanding between the two is prevented by

the context and by the fact that the sets of coordinates
appears only as a sum index.

Let U be a function on the same state space as
Q′ s of the form U = U (1) + U (2) + U (3) + · · · , where
U (m) =

∑m
{1}
∑s

〈1〉 ui(xν) and the subscript of u refers to
the classes while that of x to co-ordinates, then its average
over Q′ s will be〈

U
〉

=
〈
U (1)

〉
{1}

+
〈
U (2)

〉
{2}

+
〈
U (3)

〉
{3}

+ · · · (3)〈
Uk
〉

=
〈
U (1)k

〉
{1}

+
〈
U (2)k

〉
{2}

+
〈
U (3)k

〉
{3}

+ · · ·
(4)

In the following we will compute 〈U〉, 〈U2〉 and 〈U3〉 and
we will define the so-called f-functions and correlation
functions (CFs) [13], nevertheless the bulk of calculation
is reported in the appendices.

By using a short notation: U (1) =
∑

〈1〉 ui, U (2) =∑
〈1〉 ui +

∑
〈1〉 uj . The superscript (1) stands for the pres-

ence of a single class (m = 1) which is specified by the
subscript i of the single-variable function ui, where the
variable dependence is understood. By the same token
the superscript (2) stands for the presence of two classes
(m = 2), namely i, j.

2.2 Average quantities

The average of U (1)reads〈
U (1)

〉
=
∑
{1}

∑
s

∑
∏s

{1}

1
ni!

∫
Q

(1)
πs

i

∑
〈1〉

ui dsx

=
∑
{1}

∑
s

∑
∏s

{1}

ni

ni!

∫
ui dx

∫
Q

(1)
πs

i
ds−1x (5)

which, defining the function hi ≡ ∑
s

∑∏
s
{1}

×
ni

ni!
∫

Q
(1)
πs

i
ds−1xi, can be rewritten as

〈U (1)〉 =
∑
{1}

∫
ui hi dxi ≡

∑
{1}

(uihi). (6)

By following a similar path of computation and defining
the functions

hi,j ≡
∑

s

∑
∏

s
{2}

ni

ni!nj !

∫
Q

(2)
πs

ij
dni−1xid

njxj and hi,jk

≡
∑

s

∑
∏

s
{3}

ni

ni!nj !nk!

∫
Q

(3)
πs

ijk
dni−1xid

njxjd
nkxk

one obtains

〈U (2)〉 =
∑
{1}

∑
{1}\i

(uihi,j) (7)

〈U (3)〉 =
∑
{1}

∑
{2}\i

(uihi,jk) (8)
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where the symbol {m}\i means that all the m-tuplas are
considered that do not contain the i-class and, as in equa-
tion (5), the parenthesis denote an integration. It is now
possible to define the f-functions for any single class, that,
at odds with those defined in [13], take into account the
presence of the other classes, as

fi ≡ hi +
∑
{1}\i

hi,j +
∑
{2}\i

hi,jk +
∑
{3}\i

hi,jkl + · · · (9)

and thus one ends up with

〈U〉 =
∑
{1}

(uifi). (10)

The meaning of the fi-function is immediate: the term
fidxi gives the probability of finding a dot (any) belong-
ing to the i class in the volume element dxi around xi,
irrespective of the location of the other dots.

As far as the evaluation of 〈U2〉 and 〈U3〉 are con-
cerned, the computation is more involved. However even
in this case it is profitable to define fij and fijk functions
for couples and terns of classes such that, fij dxi dxj gives
the probability of finding a dot of the i class in the element
dxi around xi and a dot of the j class in the element dxj

around xj , irrespective of the location of the other dots; in
a similar way fijk is defined. The evaluation of the aver-
ages, which have been reported in the Appendix A, leads
to the results:

〈U2〉 =
∑
{1}

(u2
i fi) +

∑
{1}

∑
{1}

(uiujfij) (11)

〈U3〉 =
∑
{1}

(u3
i fi) + 3

∑
{1}

∑
{1}

(u2
i ujfij)

+
∑
{1}

∑
{1}

∑
{1}

(uiujukfijk). (12)

2.3 The functional “L”

Let us now define the following functional of the stochastic
variables {u}

L
[{u}] ≡

〈
ni∏
〈1〉

(1 + ui)
nj∏
〈1〉

(1 + uj)
nk∏
〈1〉

(1 + uk) · · ·
〉

.

(13)
By making use of the averages of the previous section,
equation (13) can be written as

L
[{u}] =1 +

∑
{1}

∑
s

∑
∏

s
1

1
s!
(
us

1fs

)
+
∑
{2}

∑
s

∑
∏

s
2

1
n1!n2!

(
un1

1 un2
2 fn1n2

)
+ · · ·

=1 +
∑
m

∑
{m}

∑
s

∑
∏

s
m

1
n1! · · ·nm!

× (un1
1 · · ·unm

m fn1···nm

)
(14)

where fn1···nm denotes the f-function that depends upon
s =

∑m
i=1 ni variables of which n1 of class 1, n2 of class 2

and so on. The details of the computation are reported in
Appendix C.

2.4 Correlation functions

We are now in a position to define the CFs, gm, through
the cluster expansion of the f -functions [13]. For the sake
of clearness we report the case of four variables, two classes
and the partition (n1, n2) = (2, 2), as follows:

f2,2(1, 2, 3̄, 4̄) = g1(1)g1(2)g1(3̄)g1(4̄) + g2(1, 2)g2(3̄, 4̄)
+ g2(1, 3̄)g2(2, 4̄) + g2(1, 4̄)g2(2, 3̄)
+ g1(1)g3(2, 3̄, 4̄) + g1(2)g3(1, 3̄, 4̄)
+ g1(3̄)g3(1, 2, 4̄) + g1(4̄)g3(1, 2, 3̄)
+ g1(1)g1(2)g2(3̄, 4̄) + g1(1)g1(3̄)g2(2, 4̄)
+ g1(1)g1(4̄)g2(2, 3̄) + g1(2)g1(3̄)g2(1, 4̄)
+ g1(2)g1(4̄)g2(1, 3̄) + g1(3̄)g1(4̄)g2(1, 2)
+ g4(1, 2, 3̄, 4̄), (15)

where the bar distinguishes the class. In order to obtain
the expansion, in the first place, we need to determine
the set, p4, of the partition of 4, in which the generic ele-
ment of the set is (k1, k2, k3, k4) and the positive integers
ki are determined according to the fulfillment of the re-
lation 4 = 1k1 + 2k2 + 3k3 + 4k4; in this case: (4,0,0,0),
(0,2,0,0), (1,0,1,0), (2,1,0,0) and (0,0,0,1). The first ele-
ment implies four functions of one variable, the second
element two functions of two variables and so on, as in
equation (15). The second step is to form, within each el-
ement of the set p4, the set, P4, of all the permutations
which give an original (independent) contribution.

The generalization to the case of s variables, m classes
and the partition (n1, · · · , nm) leads to

fn1,n2···nm =
∑
ps

∑
Ps

k1∏
g1 · · ·

kn∏
gn · · ·

ks∏
gs. (16)

The short notation
kn∏

gn indicates the product of kn

n-variable CFs. The n-variables are linked to the m
classes, i.e. there are νn

1 variables of class 1, νn
2 variables

of class 2 and so on, in such a way that
m∑

j=1

νn
j = n. (17)

It can happen that some of the kn m-tuples coincides (for
example in Eq. (15) g2(1, 3̄) and g2(2, 4̄) contain the same
m-tupla, i.e. the couple ν2

1 = 1, ν2
2 = 1), therefore, if

µ(n/m) is the index that refers to the µth distinct m-tuple
satisfying equation (17), and kµ(n/m) is the multiplicity of
µ(n/m), i.e. the number of times it occurs, equation (16)
can be written as

fn1,n2···nm =
∑
ps

∑
Ps

∏
n

∏
µ(n/m)

[
gn(νn

1µ · · · νn
mµ)

]kµ(n/m)

(18)
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where ∑
µ(n/m)

kµ(n/m) = kn (19)

and ∑
n

∑
µ(n/m)

kµ(n/m)ν
n
jµ = nj (20)

and the notation gn(νn
1µ · · · νn

mµ) stands for

gn(x(1)
1 , · · · ,x(1)

νn
1µ

,x(2)
1 , · · · ,x(2)

νn
2µ

· · · ,x(m)
1 , · · · ,x(m)

νn
mµ

),
where the superscript refers to the class.

The following step is to determine the number of dis-
tinct permutations. Terms are not different if they differ
by the order of variables of the same class inside the in-
dividual gn’s or by the order of factor gn whose m-tuple,
νn
1µ · · · νn

mµ, pertains to the same µ(n/m). Thus the num-
ber of terms is

n1!n2! · · ·nm!∏
n

∏
µ(n/m)

(νn
1µ!)kµ(n/m) · · · (νn

mµ!)kµ(n/m)kµ(n/m)!
· (21)

Inserting equation (18) in equation (14), and taking
into account equation (21) and the fact that u

nj

j =

u
(
∑

n

∑
µ(n/m) kµ(n/m)ν

n
jµ)

j =
∏

n

∏
µ(n/m) u

kµ(n/m)ν
n
jµ

j the
functional (Eq. (14)) becomes

L
[{u}] = 1 +

∑
m

∑
{m}

∑
s

∑
∏s

m

∑
Ps

∏
n

∏
µ(n/m)

× 1
kµ(n/m)!



(
u

νn
1µ

1 · · ·uνn
mµ

m gn(νn
1µ · · · νn

mµ)
)

νn
1µ! · · · νn

mµ!




kµ(n/m)

·

(22)

This formidable expression can be rewritten in a simpler
way as

L
[{u}] =

∏
m

∏
{m}

∏
s

∏
∏s

m

∞∑
k=0

1
k!

×


(
u

νs
1

1 · · ·uνs
m

m gs(νs
1 · · · νs

m)
)

νs
1 ! · · · νs

m!




k

· (23)

As a matter of fact each term of equation (23) can be put
in one-to-one correspondence with a term of equation (22),
with the aid of constraints (17, 19, 20).

It follows that

L
[{u}] = exp


∑

m

∑
{m}

∑
s

∑
∏

s
m

×
(
u

νs
1

1 · · ·uνs
m

m gs(νs
1 · · · νs

m)
)

(νs
1 ! · · · νs

m!)


 · (24)

On the basis of equation (24) it is possible to evaluate the
probability, Q0, that no dots of the i class be in the ∆i do-
main, no dots of the j class be in the ∆j domain etc. Let us
denote by χi the characteristic function of the i-class dots,
defined as follows: χi(x) = 1 for x ⊂ ∆i and χi(x) = 0
for x ⊂/ ∆i. Consequently, the stochastic variable “num-
ber of dots”, N , reads N (m) =

∑m
{1}
∑s

〈1〉 χi(xν). The
average of the stochastic variable eikN , where k is a
parameter, is given through equation (13) according to
〈exp(ikN)〉 ≡ L

[{exp(ikχ) − 1}]. Moreover since Q0 =
lim

exp(ik)→0
〈exp(ikN)〉 [13] we infer from equation (14), the

important relationship

Q0 = L
[{−χ}] (25)

which by employing equation (24), becomes

Q0 = exp


∑

m

∑
{m}

∑
s

∑
∏s

m

×
(−)s

∫
∆1

dνs
1x1 · · ·

∫
∆m

dνs
mxmgs(νs

1 · · · νs
m)

νs
1 ! · · · νs

m!


 · (26)

2.5 Continuum limit

In order to perform the continuum limit of equation (26)
it is convenient to rewrite the CFs according to [14] as:

gs(νs
1 , νs

2 , · · · , νs
m) = n

νs
1

1 n
νs
2

2 · · ·nνs
m

m g̃s (27)

where n1, · · ·nm are the densities of dots of
classes 1, · · · , m, respectively. Moreover, it is possi-
ble to show that equation (26) can be rewritten as:

Q0 = exp

[∑
s

(−)s

s!

∑
i1

· · ·
∑
is

(ni1 · · ·nis)

×
∫

∆i1

dx(i1) · · ·
∫

∆is

dx(is)g̃s(x(i1), · · · ,x(is))

]
(28)

where the multiplicity (νs
i ) is naturally included by reason

of the fact that the sum indexes (ik) run, independently,
over all classes. In the Appendix C the equivalence of equa-
tions (26) and (28) is shown for the case of three classes.
The continuum limit implies: ni → ∆n(ti) = I(ti)∆t,
∆n(ti) is the number of dots between the ti and ti + ∆t
classes; thus equation (28) becomes

Q0 = exp

{ ∞∑
s=1

(−)s

s!

∫ t

0

dt1

∫ t

0

dt2 · · ·
∫ t

0

dtsI(t1) · · · I(ts)

×
∫

∆t1

dx1 · · ·
∫

∆ts

dxs g̃s(x1 · · ·xs)

}
. (29)
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It is worth noticing that in case of nucleation into an
homogeneous medium, g̃1 = 1 and the contribution at
s = 1, in the argument of equation (29), gives −Xe =
− ∫ t

0
dt′I(t′)|∆t′ | where |∆t′ | is the measure of the domain

and Xe is the so called extended volume in dD. The ki-
netics can be rewritten according to:

Q0 = exp(−γXe) (30)

where

γ = 1 −
∞∑

s=2

(−)s

s!Xe

∫ t

0

dt1

∫ t

0

dt2 · · ·
∫ t

0

dts I(t1) · · · I(ts)

×
∫

∆t1

dx1 · · ·
∫

∆ts

dxs g̃s(x1 · · ·xs). (31)

Correlation among nuclei is entirely considered through
the γ term and, in the limit γ = 1 equation (29) reduces
to the one of the Poisson process. It is worth noticing that
in the limiting case of simultaneous nucleation, i.e. for
I(t) ∝ δ(t) δ being Dirac’s delta, equation (29) leads to
the result obtained in reference [8].

3 KJMA-type phase transitions case

The foregoing results can be exploited for describing phase
transition kinetics in which nucleation and growth laws
are given a priori (KJMA-type transitions). Although the
theory is independent of the space dimension, for the sake
of simplicity we will deal with the 2D case. To this end I(t)
becomes the nucleation rate, |∆t′ | = πR2(t− t′), R(t− t′)
being the growth law and (1−Q0) is equal to the fraction
of transformed phase (surface).

Two cases can be pursued, they are:

a) the correlation functions do not depend on the birth
time of the nuclei;

b) the correlation functions depend on the birth time of
the nuclei.

The simplest example of correlation is the “hard core”
case. For the a)-b) cases, as far as the lowest order term of
g̃2 is concerned, the two dots “tilded” correlation functions
are, respectively,

I)

g̃
(0)
2 = H(r − Rhc) − 1 (32)

II)

g̃
(0)
2 (i, j) = H

[
r − (Rij + ρ)

]− 1 (33)

where H is the Heaviside function, r = |r1 − r2| is the
modulus of the distance between nuclei 1 and 2, Rhc is
the hard core distance, Rij = R(ti − tj) and ρ is, in gen-
eral, a function of time. In other words around each island
a region exists where nucleation is forbidden (Fig. 1). The
first case (I) has been thoroughly analyzed in reference [1]

Fig. 1. Panel A refers to case I) of Section 3. The nucleation
is prevented within a circle of radius Rhc centered around each
nucleus. In the same panel it is also shown a phantom nu-
cleus i.e. a nucleus born outside Rhc but beneath and already
formed nucleus. In panel B a cluster made up of three nuclei
is surrounded by a a zone of thickness ρ where the nucleation
is forbidden. This refers to the correlation problem tackled in
point II) of Section 3.

by only considering terms up to s = 2, for constant nu-
cleation rate and linear growth law. In particular, an ana-
lytical expression of the γ exponent has been given by de-
coupling the integral on the g2 function in equation (31),
once expressed through polar coordinates [1]. It is

γ(Se, S
∗) = 1 +

1
2

{
SeH

(
1 − 3Se

S∗

)

+
[
S∗ − 2Se(S∗/3Se)3/2

]
H

(
3Se

S∗ − 1
)}

(34)

where S∗ = πR2
hcI(3Se/a2πI)1/3, I and a being the nucle-

ation and growth rates respectively. In this case the size
of the zone where the nucleation is inhibited is constant
and it is the same for each nucleus. Conversely, the second
case is indeed more realistic since the capture zone is an
annular ring of thickness ρ surrounding each nucleus. In
other words, for a nucleus of radius R, the zone where the
nucleation is inhibited, is a circle or radius R + ρ. This
problem has been dealt with firstly in references [10,11]
employing a different approach which is not based on the
use of CFs. The formalism developed in Section 2 is gen-
eral and can be applied to case II as well. By retaining
terms up to s = 2 and considering a constant nucleation
rate, equation (31) reads

γ = 1 +
Se

2
− I2

2Se

∫ t

0

dt′
∫ t

0

dt′′Γ
[
R(t, t′), R(t, t′′)

]
(35)
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where, in case of linear growth,

Γ [R′, R′′] = 2π

∫ R′′

0

rdr

∫ 2π

0

dθ

×
∫ η(R′,r,θ)

0

yH
[
y − (R′ − R′′ + ρ)

]
dy (36)

where η(R′, r, θ) = −r cos θ +(R′2 − r2 sin2 θ)1/2, ρ is con-
sidered as a constant and R′′ < R′. The calculation points
out that the contribution of equation (36) is numerically
unimportant for ρ > 0.7

(
a
I Se

)1/3 which, for Se = 3 that

is its typical maximum value, gives ρ >
(

a
I

)1/3. So the
following expression for the kinetics can be retained:

S ∼= 1 − exp
(
−Se − S2

e

2

)
. (37)

We conjecture that equation (37) can be employed when-
ever nuclei are correlated according to equation (33).
Moreover in equation (37) the extended surface is com-
puted using the actual nucleation rate which is an exper-
imentally accessible quantity.

We recall that the for the hard core model (referred
to as Matern’s process) the exact expression of g2 is avail-
able [15]. Conversely it is known that higher order corre-
lation functions can be approximated only.

Apparently the aforementioned nucleation rate is un-
physical the number of nucleation events being constant
for each value of the surface fraction available for nucle-
ation, Sfree ; a more suitable choice would require I(t) =
ISfree .

It is worth pointing out that in case I), when the radius
of the nucleus becomes larger than Rhc, the probability to
nucleate a phantom is different from zero (Fig. 1A). On
the contrary in case II) phantoms cannot nucleate at all.
Furthermore, in the limiting case ρ = 0, the S(t) kinetics
given by equations (30, 35–36), reduces to the KJMA so-
lution, but evaluated by using the actual nucleation rate.
To be specific, the phase transition analyzed as a prob-
lem of correlated nucleation (nucleation is not permitted
on the already transformed surface) with constant value
of the actual nucleation rate, I, is stochastically equiva-
lent to a KJMA problem for the non constant nucleation
rate I(t) = I

(1−S) . In other words the difference between
the two view points lays in the inclusion of phantoms as
required in the KJMA treatment of phase transitions.

Conclusions

The exact solution for the kinetics of growth of spatially
correlated nuclei for any nucleation function has been
demonstrated in Section 2. It has been applied to model
phase transition kinetics driven by a constant actual nu-
cleation rate, when the correlation function depends on
the birth time of the nucleus through the characteristic
distance ρ. In this case phantoms do not exist and the

kinetics reduces to equation (37) where the extended sur-
face is computed on the actual nucleation rate. We con-
jecture that, in order to describe the kinetics of hard core
correlated nuclei (Eq. (33)), the KJMA formula must be
substituted by equation (37). Work is in progress to sub-
stantiate the conjecture.

Appendix A

The purpose of this appendix is to derive equations (11)
and (12). In the first place we evaluate〈

U2
〉

=
〈
U (1)2

〉
{1}

+
〈
U (2)2

〉
{2}

+
〈
U (3)2

〉
{3}

+· · · (A.1)

Let us begin expanding the three terms of series (A.1)

U (1)2 =
∑
〈1〉

ui

∑
〈1〉

ui =
∑
〈1〉

u2
i + 2

∑
〈2〉

uiui; (A.2)

U (2)2 =


∑

〈1〉
ui +

∑
〈1〉

uj


2

=


∑

〈1〉
ui


2

+ (j)2 + 2
∑
〈1〉

ui

∑
〈1〉

uj

=


∑

〈1〉
u2

i + 2
∑
〈2〉

uiui


+ (j) + 2

∑
〈1〉

ui

∑
〈1〉

uj;

(A.3)

U (3)2 =


∑

〈1〉
ui +

∑
〈1〉

uj +
∑
〈1〉

uk


2

=


∑

〈1〉
ui


2

+ (j) + (k) + 2
∑
〈1〉

ui

∑
〈1〉

uj + (ik) + (jk)

=


∑

〈1〉
u2

i + 2
∑
〈2〉

uiui




+ (j) + (k) + 2
∑
〈1〉

ui

∑
〈1〉

uj + (ik) + (jk).

(A.4)

The addends made up by a letter (class index) in paren-
thesis denote, in a very short way, the same term on
their left in which the class index is that in parenthesis.
Regarding the evaluation of the averages they reduce to

〈
U (1)2

〉
{1}

=
∑
{1}

(u2
i hi)

∑
{1}

(uiuihii) (A.5)
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where hii ≡
∑

i

∑
∏

s
i

ni(ni − 1)
ni!

∫
Q

(1)
πs

i
ds−2xi,

〈
U (2)2

〉
{2}

=
∑
{1}

∑
{1}\i

(u2
i hi,j) +

∑
{1}

∑
{1}\i

(uiuihii,j)

+ 2
∑
{2}

(uiujhij) (A.6)

where hii,j ≡ ∑
s

∑∏
s
{2}

ni(ni−1)
ni!nj !

∫
Q

(2)
πs

ij
dni−2 xi dnj xj

and hij ≡ ∑
s

∑∏s
{2}

ninj

ni!nj !

∫
Q

(2)
πs

ij
dni−1 xi dnj−1xj . Since

2
∑

{2}(uiujhij) =
∑

{1}
∑

{1}\i(uiujhij), equation (A.6)
can be also written as

〈
U (2)2

〉
ij

=
∑
{1}

∑
{1}\i

[
(u2

i hi,j) + (uiuihii,j) + (uiujhij)
]
.

(A.7)
As far as

〈
U (3)2

〉
{3}

is concerned

〈
U (3)2

〉
{3}

=
∑
{3}

[
(u2

i hi,jk) + (j) + (k) + (uiuihii,jk)

+ (j) + (k)
]
+ 2

∑
{3}

[
(uiujhij,k) + (ki) + (jk)

]
(A.8)

or

〈
U (3)2

〉
{3}

=
∑
{1}

∑
{2}\i

[
(u2

i hi,jk) + (uiuihii,jk)
]

+
∑
{1}

∑
{1}\i

∑
{1}\i.j

(uiujhij,k) (A.9)

where

hii,jk ≡
∑

s

∑
∏

s
{3}

ni(ni − 1)
ni!nj!nk!

∫
Q

(3)
πs

ijk
dni−2 xi dnj xj dnk xk

and

hij,k ≡
∑

s

∑
∏

s
{3}

ninj

ni!nj !nk!

∫
Q

(3)
πs

ijk
dni−1 xi dnj−1 xj dnk xk.

Combining equations (A.5, A.7, A.9) the average of U2 is
at last achieved

〈
U2
〉

=
∑
{1}

(u2
i hi) +

∑
{1}

(uiuihii)

+
∑
{1}

∑
{1}\i

[
(u2

i hi,j) + (uiuihii,j) + (uiujhij)
]

+
∑
{1}

∑
{2}\i

[
(u2

i hi,jk) + (uiuihii,jk)
]

+
∑
{1}

∑
{1}\i

∑
{1}\i.j

(uiujhij,k)

=
∑
{1}

[(
u2

i

{
hi +

∑
{1}\i

hi,j +
∑
{2}\i

hi,jk + · · ·
})

+
(

uiui

{
hii +

∑
{1}\i

hii,j +
∑
{2}\i

hii,jk + · · ·
})

+
∑
{1}\i

(
uiuj

{
hij +

∑
{1}\i.j

hij,k

})]
. (A.10)

By defining the f-functions for any couple of classes as

fii ≡hii +
∑
{1}\i

hii,j +
∑
{2}\i

hii,jk +
∑
{3}\i

hii,jkl + · · ·

(A.11)

fij ≡hij +
∑

{1}\i,j

hij,k + · · · (A.12)

equation (A.10) finally gives

〈
U2
〉

=
∑
{1}

(u2
i fi) +

∑
{1}

∑
{1}

(uiujfij). (A.13)

Concerning the calculation of

〈
U3
〉

=
〈
U (1)3

〉
{1}

+
〈
U (2)3

〉
{2}

+
〈
U (3)3

〉
{3}

+ · · · ,

(A.14)
let us begin expanding the first three terms of the se-
ries (A.14):

U (1)3 =
∑
〈1〉

ui

∑
〈1〉

ui

∑
〈1〉

ui

=
∑
〈1〉

u3
i + 3

∑
〈2〉

u2
i ui + 3!

∑
〈3〉

uiuiui; (A.15)
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U (2)3 =
(∑

〈1〉
ui +

∑
〈1〉

uj

)3

=
(∑

〈1〉
ui

)3

+ (j) + 3
(∑

〈1〉
ui

)2∑
〈1〉

uj + (ij)

=
(∑

〈1〉
u3

i + 3
∑
〈2〉

u2
i ui + 3!

∑
〈3〉

uiuiui

)

+ (j) + 3
(∑

〈1〉
u2

i + 2
∑
〈2〉

uiui

)∑
〈1〉

uj + (ji);

(A.16)

U (3)3 =
(∑

〈1〉
ui +

∑
〈1〉

uj +
∑
〈1〉

uk

)3

=
(∑

〈1〉
ui

)3

+ (j) + (k) + 3
(∑

〈1〉
ui

)2∑
〈1〉

uj + (ik) + (jk)

+ 3
∑
〈1〉

ui

(∑
〈1〉

uj

)2

+ (ik) + (jk)

+ 6
∑
〈1〉

ui +
∑
〈1〉

uj +
∑
〈1〉

uk

=
(∑

〈1〉
u3

i + 3
∑
〈2〉

u2
i ui + 3!

∑
〈3〉

uiuiui

)
+ (j) + (k)

+ 3
(∑

〈1〉
u2

i + 2
∑
〈2〉

uiui

)∑
〈1〉

uj + (ik) + (jk)

+ 3
∑
〈1〉

ui

(∑
〈1〉

u2
j + 2

∑
〈2〉

ujuj

)
+ (ik) + (jk)

+ 6
∑
〈1〉

ui

∑
〈1〉

uj

∑
〈1〉

uk. (A.17)

The averages are:

〈
U (1)3

〉
{1}

=
∑
{1}

(u3
i hi) + 3

∑
{1}

(u2
i uihii) +

∑
{1}

(uiuiuihiii)

(A.18)
where

hiii =
∑

s

∑
∏

s
i

ni(ni − 1)(ni − 2)
ni!

∫
Q

(1)
πs

i
ds−3 xi;

〈
U (2)3

〉
{2}

=
∑
{1}

∑
{1}\i

[
(u3

i hi,j) + 3(u2
i uihii,j)

+ (uiuiuihiii,j)
]

+

〈
3
(∑

{1}
u2

i + 2
∑
{2}

uiui

)∑
{1}

uj + (ji)

〉
{2}

(A.19)

and the computation of the last two terms leads to

〈
3
∑
〈1〉

u2
i

∑
〈1〉

uj + (ji)
〉

{2}
=

3
∑
{2}

[
(u2

i ujhij) + (u2
juihji)

]
=

3
∑
{1}

∑
{1}\i

(u2
i ujhij) (A.20)

and

〈
3 × 2

∑
〈2〉

uiui

∑
〈1〉

uj + (ji)

〉
{2}

=

3
∑
{2}

[(
uiuiujhiij

)
+
(
ujujuihjji

)]
=

3
∑
{1}

∑
{1}\i

(
uiuiujhiij

)
. (A.21)

Combining equation (A.19–A.21) the average
〈
U (2)3

〉
{2}

reduces to

〈
U (2)3

〉
{2}

=
∑
{1}

∑
{1}\i

[(
u3

i hi,j

)
+ 3
(
u2

i uihii,j

)

+
(
uiuiuihiii,j

)
+ 3
(
u2

i ujhij

)
+ 3
(
uiuiujhiij

)]
. (A.22)

For the sake of clarity, in calculating
〈
U (3)3

〉
it is con-

venient to proceed considering the last term of equa-
tion (A.17) line by line.

The three sums over 〈1〉, 〈2〉 and 〈3〉 of
the first line lead, considering also the con-
tribution of (j) and (k), respectively, to∑

{1}
∑

{2}\i(u
3
i hi,jk), 3

∑
{1}
∑

{2}\i

(
u2

i uihii,j

)
and∑

{1}
∑

{2}\i

(
uiuiuihiii,jk

)
. To obtain these relations it
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has been exploited the equality:
∑

{3}[(i, jk) + (j, ik) +
(k, ij)] =

∑
{1}
∑

{2}\i(i, jk). Therefore the contribution
of the entire first line is

∑
{1}

∑
{2}\i

[(
u3

i hi,jk

)
+ 3
(
u2

i uihii,jk

)
+
(
uiuiuihiii,jk

)]
.

(A.23)
Concerning the second line, let us begin considering
the average of 3

∑
〈1〉 u2

i

∑
〈1〉 uj and of the analogous

terms (ik) e (jk); they lead to 3
∑

{3}
[(

u2
i ujhij,k

)
+(

u2
i ukhik,j

)
+
(
u2

jukhjk,i

)]
and from the same terms in

the third line one gets 3
∑

{3}
[(

u2
juihji,k

)
+
(
u2

kuihki,j

)
+(

u2
kujhkj,i

)]
. Since

(
u2

i ujhij,k

)
=
(
u2

juihji,k

)
the two con-

tributions can sum up to

3×2
∑
{3}

[(
u2

i ujhij,k

)
+
(
u2

i ukhik,j

)
+
(
u2

jukhjk,i

)]
(A.24)

and, because of the equality 2
∑

{3}
[(

ij, k
)

+
(
ik, j

)
+(

jk, i
)]

=
∑

{1}
∑

{1}\i

∑
{1}\i,j

(
ij, k

)
, equation (A.24)

becomes

3
∑
{1}

∑
{1}\i

∑
{1}\i,j

(u2
i ujhij,k). (A.25)

Similarly, the term 3 × 2
∑

〈2〉 uiui

∑
〈1〉 uj together with

the analogous terms (ik) e (jk) lead to

3
∑
{1}

∑
{1}\i

∑
{1}\i,j

(uiuiujhiij,k). (A.26)

The forth line yields

6
∑
{3}

(uiujukhijk) =
∑
{1}

∑
{1}\i

∑
{1}\i,j

(uiujukhijk). (A.27)

Summing up equations (A.23) and (A.25–A.27) one gets

〈
U (3)3

〉
{3}

=
∑
{1}

∑
{2}\i

[(
u3

i hi,jk

)
+ 3
(
u2

i uihii,jk

)
+
(
uiuiuihiii,jk

)]
+
∑
{1}

∑
{1}\i

∑
{1}\i,j

[
3
(
u2

i ujhij,k

)
+ 3
(
uiuiujhiij,k

)
+
(
uiujukhijk

)]
(A.28)

and combining equations (A.18, A.22) and (A.28) the av-
erage of U3 is at last obtained

〈
U3
〉

=
∑
{1}

[(
u3

i hi

)
+ 3
(
u2

i uihii

)
+
(
uiuiuihiii

)]

+
∑
{1}

∑
{1}\i

[(
u3

i hi,j

)
+ 3
(
u2

i uihii,j

)
+
(
uiuiuihiii,j

)
+ 3
(
u2

i ujhij

)
+ 3
(
uiuiujhiij

)]
+
∑
{1}

∑
{2}\i

[(
u3

i hi,jk

)
+ 3
(
u2

i uihii,jk

)
+
(
uiuiuihiii,jk

)]

+
∑
{1}

∑
{1}\i

∑
{1}\i,j

[
3
(
u2

i ujhij,k

)
+ 3
(
uiuiujhiij,k

)
+
(
uiujukhijk

)]
=
∑
{1}

{(
u3

i

(
hi +

∑
{1}\i

hi,j +
∑
{2}\i

hi,jk + · · · ))

+
(
u2

i ui

(
3hii + 3

∑
{1}\i

hii,j + 3
∑
{2}\i

hii,jk + · · · ))

+
(
uiuiui

(
hiii +

∑
{1}\i

hiii,j +
∑
{2}\i

hiii,jk + · · · ))

+ 3
∑
{1}\i

[(
u2

i uj

(
hij +

∑
{1}\i,j

hij,k + · · · )
+
(
uiuiuj

(
hiij +

∑
{1}\i,j

hiij,k + · · · )]

+
∑
{1}\i

∑
{1}\i,j

(
uiujuk(hijk + · · · ))}

=
∑
{1}

{(
u3

i fi

)
+ 3
(
u2

i uifii

)
+
(
uiuiuifiii

)
+ 3

∑
{1}\i

[(
u2

i ujfij

)
+
(
uiuiujfiij

)

+
∑
{1}\i

∑
{1}\i,j

(
uiujukfijk

)}
. (A.29)

In writing the last term of equation (A29) the following
f-functions have been defined for any tern of classes as

fiii =hiii +
∑
{1}\i

hiii,j +
∑
{2}\i

hiii,jk + · · · (A.30)

fiij =hiij +
∑

{1}\i,j

hiij,k + · · · (A.31)

fijk =hijk + · · · (A.32)
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It is easy to verify that equation (A.29) can be rewritten
in a more compact form as〈
U3
〉

=
∑
{1}

(
u3

i fi

)
+ 3

∑
{1}

∑
{1}

(
u2

i ujfij

)
+
∑
{1}

∑
{1}

∑
{1}

(
uiujukfijk

)
. (A.33)

Appendix B

In case of a single class equation (13) becomes
〈ni∏
〈1〉

(
1 +

ui

)〉
=
〈
1 +

∑
〈1〉 ui +

∑
〈2〉 uiui +

∑
〈3〉 uiuiui + · · ·

〉
and by exploiting the results obtained in calculating the
averages of the variable U and its powers, it is possible to
verify that the average operation on the functional gives

〈∑
〈1〉

ui

〉
=
∑
{1}

(
uihi

)
(B.1′)

〈∑
〈2〉

uiui

〉
=

1
2!

∑
{1}

(
uiuihii

)
(B.2′)

〈∑
〈2〉

uiuiui

〉
=

1
3!

∑
{1}

(
uiuiuihiii

)
. (B.3′)

In case of two classes equation (13) reduces to;〈
ni∏
〈1〉

(
1 + ui

) nj∏
〈1〉

(
1 + uj

)〉
=

〈
1 +

∑
〈1〉

ui

+
∑
〈1〉

uj +
∑
〈2〉

uiui +
∑
〈2〉

ujuj +
∑
〈1〉

∑
〈1〉

uiuj

+
∑
〈3〉

uiuiui +
∑
〈2〉

∑
〈1〉

uiuiuj +
∑
〈1〉

∑
〈2〉

uiujuj + · · ·
〉

and averaging〈∑
〈1〉

ui +
∑
〈1〉

uj

〉
=
∑
{1}

∑
{1}\i

(
uihi,j

)
(B.1′′)

〈∑
〈2〉

uiui +
∑
〈2〉

ujuj

〉
=

1
2!

∑
{1}

∑
{1}\i

(
uiuihii,j

)
(B.2′′)

〈∑
〈3〉

uiuiui +
∑
〈3〉

ujujuj

〉
=

1
3!

∑
{1}

∑
{1}\i

(
uiuiuihiii,j

)
(B.3′′)〈∑

〈1〉

∑
〈1〉

uiuj

〉
=

1
2

∑
{1}

∑
{1}\i

(
uiujhij

)
=
∑
{2}

(
uiujhij

)
(B.4′′)

〈∑
〈2〉

∑
〈1〉

uiuiuj +
∑
〈1〉

∑
〈2〉

uiujuj

〉
=

1
2!

∑
{1}

∑
{1}\i

(
uiuiujhiij

)
. (B.5′′)

In case of three classes equation (13) reduces to〈
ni∏
〈1〉

(
1+ui

) nj∏
〈1〉

(
1+uj

) nk∏
〈1〉

(
1+uk

)〉
=

〈
1+
∑
〈1〉

ui+
∑
〈1〉

uj

+
∑
〈1〉

uk +
∑
〈2〉

uiui +
∑
〈2〉

ujuj +
∑
〈2〉

ukuk

+
∑
〈1〉

∑
〈1〉

uiuj +
∑
〈1〉

∑
〈1〉

uiuk +
∑
〈1〉

∑
〈1〉

ujuk

+
∑
〈3〉

uiuiui +
∑
〈3〉

ujujuj +
∑
〈3〉

ukukuk +
∑
〈1〉

∑
〈2〉

uiuiuj

+
∑
〈1〉

∑
〈2〉

uiuiuk +
∑
〈1〉

∑
〈2〉

ujujui

+
∑
〈1〉

∑
〈2〉

ujujuk +
∑
〈1〉

∑
〈2〉

ukukuj

+
∑
〈1〉

∑
〈2〉

ukukui +
∑
〈1〉

∑
〈1〉

∑
〈1〉

uiujuk + · · ·
〉

and averaging〈∑
〈1〉

ui +
∑
〈1〉

uj +
∑
〈1〉

uk

〉
=
∑
{1}

∑
{2}\i

(
uihi,jk

)
(B.1′′′)

〈∑
〈2〉

uiui+
∑
〈2〉

ujuj+
∑
〈2〉

ukuk

〉
=

1
2

∑
{1}

∑
{2}\i

(
uiuihii,jk

)
(B.2′′′)

∑
〈3〉

uiuiui +
∑
〈3〉

ujujuj +
∑
〈3〉

ukukuk

〉
=

1
3!

∑
{1}

∑
{2}\i

(
uiuiuihiii,jk

)
(B.3′′′)

〈∑
〈1〉

∑
〈1〉

uiuj +
∑
〈1〉

∑
〈1〉

uiuk +
∑
〈1〉

∑
〈1〉

ujuk

〉
=

1
2

∑
{1}

∑
{1}\i

∑
{1}\i,j

(
uiujhij,k

)
=
∑
{3}

(
uiujhij,k

)
(B.4′′′)

〈∑
〈1〉

∑
〈2〉

uiuiuj+
∑
〈1〉

∑
〈2〉

uiuiuk+· · ·+
∑
〈1〉

∑
〈2〉

ukukui

〉
=

1
2

∑
{1}

∑
{1}\i

∑
{1}\i,j

(
uiuiujhiij,k

)
(B.5′′′)
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〈∑
〈1〉

∑
〈1〉

∑
〈1〉

uiujuk

〉
=

1
6

∑
{1}

∑
{1}\i

∑
{1}\i,j

(
uiujukhijk

)
.

(B.6′′′)
It is recognized that, once summed, equa-
tions (B.1) lead to

∑
{1}
(
uifi

)
, equations (B.2)

lead to 1
2!

∑
{1}
(
uiuifii

)
, equations (B.3) lead

to 1
3!

∑
{1}
(
uiuiuifiii

)
, equations (B.4) lead to

1
2

∑
{1}
∑

{1}\i

(
uiujfij

)
=

∑
{2}
(
uiujfij

)
, equations

(B.5) lead to 1
2!

∑
{1}
∑

{1}\i

(
uiuiujfiij

)
and equation

(B.6) leads to 1
3!

∑
{1}
∑

{1}\i

∑
{1}\i,j

(
uiujukfijk

)
=∑

{3}
(
uiujukfijk

)
. In other words, the average of the

functional equation (13) becomes

L
[{u}] = 1 +

∑
{1}

(
uifi

)
+

1
2!

∑
{1}

(
uiuifii

)
+

1
3!

∑
{1}

(
uiuiuifiii

)
+
∑
{2}

(
uiujfij

)
+

1
2!

∑
{1}

∑
{1}\i

(
uiuiujfiij

)
+
∑
{3}

(
uiujukfijk

)
+ · · ·

(B.7)

It is possible to rewrite equation (B.7) in a more familiar
and manageable form as reported in equation (14).

Appendix C

In order to demonstrate the equivalence between equa-
tions (26) and (28), we will tackle the case m = 3. For
m > 3 the same path of computation can be followed. Let
us single out the contribution s = 3 from equation (26).
It is

T3 =
3∑

m=1

∑
{m}

∑
∏3

m

−I
{m}
3

ν3
1 ! · · · νm

1 !

= −
(∑

{1}

I
(1)
3

3!
+
∑
{2}

[
I
(2,1)
3

2!1!
+

I
(1,2)
3

2!1!

]
+
∑
{3}

I
(3)
3

1!1!1!

)
(C.1)

that, for the sake of computation convenience, can be
rewritten as

T3 = −
(∑

i

I
(i,i,i)
3

3!
+
∑
i>j

[I(i,i,j)
3

2!
+

I
(j,j,i)
3

2!

]
+
∑

i>j>k

I
(i,j,k)
3

)

= −
(∑

i

I
(i,i,i)
3

3!
+
∑
i�=j

[I(i,i,j)
3

2!

]
+

1
3!

∑
i�=j �=k

I
(i,j,k)
3

)
.

(C.2)

Equation (28) yields, for s = 3,

T ′
3 =

1
3!

∑
(i,j,k)

I
(i,j,k)
3

=
1
3!

[∑
i

I
(i,i,i)
3 + 3

∑
i�=j

I
(i,i,j)
3 +

∑
i�=j �=k

I
(i,j,k)
3

]
(C.3)

apparently T3 = T ′
3.
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